Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.

نویسندگان

  • Jing-Yu Cui
  • Guillem Pratx
  • Sven Prevrhal
  • Craig S Levin
چکیده

PURPOSE List-mode processing is an efficient way of dealing with the sparse nature of positron emission tomography (PET) data sets and is the processing method of choice for time-of-flight (ToF) PET image reconstruction. However, the massive amount of computation involved in forward projection and backprojection limits the application of list-mode reconstruction in practice, and makes it challenging to incorporate accurate system modeling. METHODS The authors present a novel formulation for computing line projection operations on graphics processing units (GPUs) using the compute unified device architecture (CUDA) framework, and apply the formulation to list-mode ordered-subsets expectation maximization (OSEM) image reconstruction. Our method overcomes well-known GPU challenges such as divergence of compute threads, limited bandwidth of global memory, and limited size of shared memory, while exploiting GPU capabilities such as fast access to shared memory and efficient linear interpolation of texture memory. Execution time comparison and image quality analysis of the GPU-CUDA method and the central processing unit (CPU) method are performed on several data sets acquired on a preclinical scanner and a clinical ToF scanner. RESULTS When applied to line projection operations for non-ToF list-mode PET, this new GPU-CUDA method is >200 times faster than a single-threaded reference CPU implementation. For ToF reconstruction, we exploit a ToF-specific optimization to improve the efficiency of our parallel processing method, resulting in GPU reconstruction >300 times faster than the CPU counterpart. For a typical whole-body scan with 75 × 75 × 26 image matrix, 40.7 million LORs, 33 subsets, and 3 iterations, the overall processing time is 7.7 s for GPU and 42 min for a single-threaded CPU. Image quality and accuracy are preserved for multiple imaging configurations and reconstruction parameters, with normalized root mean squared (RMS) deviation less than 1% between CPU and GPU-generated images for all cases. CONCLUSIONS A list-mode ToF OSEM library was developed on the GPU-CUDA platform. Our studies show that the GPU reformulation is considerably faster than a single-threaded reference CPU method especially for ToF processing, while producing virtually identical images. This new method can be easily adapted to enable more advanced algorithms for high resolution PET reconstruction based on additional information such as depth of interaction (DoI), photon energy, and point spread functions (PSFs).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully 3-D List-mode Positron Emission Tomography Image Reconstruction on a Multi-GPU Cluster

List-mode processing is an efficient way of dealing with the sparse nature of PET data sets, and is the processing method of choice for time-of-flight (ToF) PET. We present a novel method of computing line projection operations required for list-mode ordered subsets expectation maximization (OSEM) for fully 3-D PET image reconstruction on a graphics processing unit (GPU) using the compute unifi...

متن کامل

Computational Optimized 3d Reconstruction System for Airborne Image Sequences

In this paper, a computational optimized 3D reconstruction system for airborne image sequences is described and tested. The onboard system is designed to generate automatically and continuously the Digital Elevation Model (DEM) for large observation areas during the flight. The aim is to provide near real-time applications such as supporting rescue teams for prompt evaluation and timely reactio...

متن کامل

Accelerated Real-Time Reconstruction of 3D Deformable Objects from Multi-view Video Channels

In this paper we present a new framework for an accelerated 3D reconstruction of deformable objects within a multi-view setup. It is based on a new memory management and an enhanced algorithm pipeline of the well known Image-Based Visual Hull (IBVH) algorithm that enables efficient and fast reconstruction results and opens up new perspectives for the scalability of time consuming computations w...

متن کامل

Benefits of Time - of - flight Positron Emission Tomography Computed Tomography with 13 N - ammonia

Noninvasive quantification of regional myocardial blood flow (MBF) and coronary flow reserve (CFR) by myocardial perfusion positron emission tomography/computed tomography (PET/CT) imaging is wellestablished and has additional diagnostic value over traditional visual analysis. A growing need for high sensitivity and high spatial resolution capable of assessing smaller targets with shorter acqui...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 38 12  شماره 

صفحات  -

تاریخ انتشار 2011